Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.499
Filter
1.
Front Immunol ; 15: 1358477, 2024.
Article in English | MEDLINE | ID: mdl-38633249

ABSTRACT

B cell transcriptomic signatures hold promise for the early prediction of vaccine-induced humoral immunity and vaccine protective efficacy. We performed a longitudinal study in 232 healthy adult participants before/after a 3rd dose of MMR (MMR3) vaccine. We assessed baseline and early transcriptional patterns in purified B cells and their association with measles-specific humoral immunity after MMR vaccination using two analytical methods ("per gene" linear models and joint analysis). Our study identified distinct early transcriptional signatures/genes following MMR3 that were associated with measles-specific neutralizing antibody titer and/or binding antibody titer. The most significant genes included: the interleukin 20 receptor subunit beta/IL20RB gene (a subunit receptor for IL-24, a cytokine involved in the germinal center B cell maturation/response); the phorbol-12-myristate-13-acetate-induced protein 1/PMAIP1, the brain expressed X-linked 2/BEX2 gene and the B cell Fas apoptotic inhibitory molecule/FAIM, involved in the selection of high-affinity B cell clones and apoptosis/regulation of apoptosis; as well as IL16 (encoding the B lymphocyte-derived IL-16 ligand of CD4), involved in the crosstalk between B cells, dendritic cells and helper T cells. Significantly enriched pathways included B cell signaling, apoptosis/regulation of apoptosis, metabolic pathways, cell cycle-related pathways, and pathways associated with viral infections, among others. In conclusion, our study identified genes/pathways linked to antigen-induced B cell proliferation, differentiation, apoptosis, and clonal selection, that are associated with, and impact measles virus-specific humoral immunity after MMR vaccination.


Subject(s)
Measles-Mumps-Rubella Vaccine , Measles , Adult , Humans , Immunity, Humoral , Longitudinal Studies , Antibodies, Viral , Gene Expression Profiling , Nerve Tissue Proteins
2.
Sci Rep ; 14(1): 8426, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637521

ABSTRACT

SARS-CoV-2 lipid nanoparticle mRNA vaccines continue to be administered as the predominant prophylactic measure to reduce COVID-19 disease pathogenesis. Quantifying the kinetics of the secondary immune response from subsequent doses beyond the primary series and understanding how dose-dependent immune waning kinetics vary as a function of age, sex, and various comorbidities remains an important question. We study anti-spike IgG waning kinetics in 152 individuals who received an mRNA-based primary series (first two doses) and a subset of 137 individuals who then received an mRNA-based booster dose. We find the booster dose elicits a 71-84% increase in the median Anti-S half life over that of the primary series. We find the Anti-S half life for both primary series and booster doses decreases with age. However, we stress that although chronological age continues to be a good proxy for vaccine-induced humoral waning, immunosenescence is likely not the mechanism, rather, more likely the mechanism is related to the presence of noncommunicable diseases, which also accumulate with age, that affect immune regulation. We are able to independently reproduce recent observations that those with pre-existing asthma exhibit a stronger primary series humoral response to vaccination than compared to those that do not, and further, we find this result is sustained for the booster dose. Finally, via a single-variate Kruskal-Wallis test we find no difference between male and female humoral decay kinetics, however, a multivariate approach utilizing  Least Absolute Shrinkage and Selection Operator (LASSO) regression for feature selection reveals a statistically significant (p < 1 × 10 - 3 ), albeit small, bias in favour of longer-lasting humoral immunity amongst males.


Subject(s)
COVID-19 , Immunity, Humoral , Female , Male , Humans , Half-Life , SARS-CoV-2 , COVID-19/prevention & control , Antibodies , RNA, Messenger , Antibodies, Viral , Vaccination
3.
Front Immunol ; 15: 1367253, 2024.
Article in English | MEDLINE | ID: mdl-38646533

ABSTRACT

Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry worldwide; it is caused by multiple bacterial or viral coinfections, of which Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the most notable pathogens. Although live vaccines have demonstrated better efficacy against BRD induced by both pathogens, there are no combined live and marker vaccines. Therefore, we developed an attenuated and marker M. bovis-BoHV-1 combined vaccine based on the M. bovis HB150 and BoHV-1 gG-/tk- strain previously constructed in our lab and evaluated in rabbits. This study aimed to further evaluate its safety and protective efficacy in cattle using different antigen ratios. After immunization, all vaccinated cattle had a normal rectal temperature and mental status without respiratory symptoms. CD4+, CD8+, and CD19+ cells significantly increased in immunized cattle and induced higher humoral and cellular immune responses, and the expression of key cytokines such as IL-4, IL-12, TNF-α, and IFN-γ can be promoted after vaccination. The 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- combined strain elicited the most antibodies while significantly increasing IgG and cellular immunity after challenge. In conclusion, the M. bovis HB150 and BoHV-1 gG-/tk- combined strain was clinically safe and protective in calves; the mix of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- strain was most promising due to its low amount of shedding and highest humoral and cellular immune responses compared with others. This study introduces an M. bovis-BoHV-1 combined vaccine for application in the cattle industry.


Subject(s)
Herpesvirus 1, Bovine , Mycoplasma bovis , Vaccines, Attenuated , Vaccines, Combined , Animals , Cattle , Herpesvirus 1, Bovine/immunology , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Mycoplasma bovis/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/adverse effects , Cytokines/metabolism , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Mycoplasma Infections/prevention & control , Mycoplasma Infections/veterinary , Mycoplasma Infections/immunology , Vaccines, Marker/immunology , Vaccines, Marker/administration & dosage , Vaccination/veterinary , Vaccine Efficacy , Immunity, Humoral , Bovine Respiratory Disease Complex/prevention & control , Bovine Respiratory Disease Complex/immunology , Bovine Respiratory Disease Complex/virology
4.
Immunohorizons ; 8(4): 326-338, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38625120

ABSTRACT

The BCR allows for Ag-driven B cell activation and subsequent Ag endocytosis, processing, and presentation to recruit T cell help. Core drivers of BCR signaling and endocytosis are motifs within the receptor's cytoplasmic tail (primarily CD79). However, BCR function can be tuned by other proximal cellular elements, such as CD20 and membrane lipid microdomains. To identify additional proteins that could modulate BCR function, we used a proximity-based biotinylation technique paired with mass spectrometry to identify molecular neighbors of the murine IgM BCR. Those neighbors include MHC class II molecules, integrins, various transporters, and membrane microdomain proteins. Class II molecules, some of which are invariant chain-associated nascent class II, are a readily detected BCR neighbor. This finding is consistent with reports of BCR-class II association within intracellular compartments. The BCR is also in close proximity to multiple proteins involved in the formation of membrane microdomains, including CD37, raftlin, and Ig superfamily member 8. Known defects in T cell-dependent humoral immunity in CD37 knockout mice suggest a role for CD37 in BCR function. In line with this notion, CRISPR-based knockout of CD37 expression in a B cell line heightens BCR signaling, slows BCR endocytosis, and tempers formation of peptide-class II complexes. These results indicate that BCR molecular neighbors can impact membrane-mediated BCR functions. Overall, a proximity-based labeling technique allowed for identification of multiple previously unknown BCR molecular neighbors, including the tetraspanin protein CD37, which can modulate BCR function.


Subject(s)
Immunity, Humoral , Membrane Proteins , Animals , Mice , Cell Line , Lymphocyte Activation , Mice, Knockout , Receptors, Antigen, B-Cell
5.
PLoS One ; 19(4): e0299215, 2024.
Article in English | MEDLINE | ID: mdl-38626093

ABSTRACT

Non-replicating adenovirus-based vectors have been broadly used for the development of prophylactic vaccines in humans and are licensed for COVID-19 and Ebola virus disease prevention. Adenovirus-based vectored vaccines encode for one or more disease specific transgenes with the aim to induce protective immunity against the target disease. The magnitude and duration of transgene expression of adenovirus 5- based vectors (human type C) in the host are key factors influencing antigen presentation and adaptive immune responses. Here we characterize the magnitude, duration, and organ biodistribution of transgene expression after single intramuscular administration of adenovirus 26-based vector vaccines in mice and evaluate the differences with adenovirus 5-based vector vaccine to understand if this is universally applicable across serotypes. We demonstrate a correlation between peak transgene expression early after adenovirus 26-based vaccination and transgene-specific cellular and humoral immune responses for a model antigen and SARS-CoV-2 spike protein, independent of innate immune activation. Notably, the memory immune response was similar in mice immunized with adenovirus 26-based vaccine and adenovirus 5-based vaccine, despite the latter inducing a higher peak of transgene expression early after immunization and a longer duration of transgene expression. Together these results provide further insights into the mode of action of adenovirus 26-based vector vaccines.


Subject(s)
Adenovirus Vaccines , Spike Glycoprotein, Coronavirus , Vaccines , Animals , Mice , Humans , Immunity, Humoral , Tissue Distribution , Immunization , Vaccination , Adenoviridae/genetics , Transgenes , Genetic Vectors/genetics , Antibodies, Viral
6.
Front Cell Infect Microbiol ; 14: 1370859, 2024.
Article in English | MEDLINE | ID: mdl-38572317

ABSTRACT

Background: The aim of the study was to evaluate the humoral and cellular immunity after SARS-CoV-2 infection and/or vaccination according to the type of vaccine, number of doses and combination of vaccines. Methods: Volunteer subjects were sampled between September 2021 and July 2022 in Hospital Clínico San Carlos, Madrid (Spain). Participants had different immunological status against SARS-CoV-2: vaccinated and unvaccinated, with or without previous COVID-19 infection, including healthy and immunocompromised individuals. Determination of IgG against the spike protein S1 subunit receptor-binding domain (RBD) was performed by chemiluminescence microparticle immunoassay (CMIA) using the Architect i10000sr platform (Abbott). The SARS-CoV-2-specific T-cell responses were assessed by quantification of interferon gamma release using QuantiFERON SARS-CoV-2 assay (Qiagen). Results: A total of 181 samples were collected, 170 were from vaccinated individuals and 11 from unvaccinated. Among the participants, 41 were aware of having previously been infected by SARS-CoV-2. Vaccinated people received one or two doses of the following vaccines against SARS-CoV-2: ChAdOx1-S (University of Oxford-AstraZeneca) (AZ) and/orBNT162b2 (Pfizer-BioNTech)(PZ). Subjects immunized with a third-booster dose received PZ or mRNA-1273 (Moderna-NIAID)(MD) vaccines. All vaccinees developed a positive humoral response (>7.1 BAU/ml), but the cellular response varied depending on the vaccination regimen. Only AZ/PZ combination and 3 doses of vaccination elicited a positive cellular response (median concentration of IFN- γ > 0.3 IU/ml). Regarding a two-dose vaccination regimen, AZ/PZ combination induced the highest humoral and cellular immunity. A booster with mRNA vaccine resulted in increases in median levels of IgG-Spike antibodies and IFN-γ as compared to those of two-dose of any vaccine. Humoral and cellular immunity levels were significantly higher in participants with previous infection compared to those without infection. Conclusion: Heterologous vaccination (AZ/PZ) elicited the strongest immunity among the two-dose vaccination regimens. The immunity offered by the third-booster dose of SARS-CoV-2 vaccine depends not only on the type of vaccine administered but also on previous doses and prior infection. Previous exposure to SARS-CoV-2 antigens by infection strongly affect immunity of vaccinated individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Vaccination , Immunity, Cellular , Immunoglobulin G , Antibodies, Viral , Immunity, Humoral
7.
Nat Commun ; 15(1): 3077, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594497

ABSTRACT

Knowledge is limited as to how prior SARS-CoV-2 infection influences cellular and humoral immunity after booster-vaccination with bivalent BA.4/5-adapted mRNA-vaccines, and whether vaccine-induced immunity may indicate subsequent infection. In this observational study, individuals with prior infection (n = 64) showed higher vaccine-induced anti-spike IgG-antibodies and neutralizing titers, but the relative increase was significantly higher in non-infected individuals (n = 63). In general, both groups showed higher neutralizing activity towards the parental strain than towards Omicron-subvariants BA.1, BA.2 and BA.5. In contrast, CD4 or CD8 T cell levels towards spike from the parental strain and the Omicron-subvariants, and cytokine expression profiles were similar irrespective of prior infection. Breakthrough infections occurred more frequently among previously non-infected individuals, who had significantly lower vaccine-induced spike-specific neutralizing activity and CD4 T cell levels. In summary, we show that immunogenicity after BA.4/5-bivalent vaccination differs between individuals with and without prior infection. Moreover, our results may help to improve prediction of breakthrough infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunity, Humoral , Breakthrough Infections , COVID-19/prevention & control , Vaccination , Vaccines, Combined , Antibodies, Neutralizing , Antibodies, Viral
8.
J Clin Invest ; 134(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557487

ABSTRACT

Endothelial function and integrity are compromised after allogeneic bone marrow transplantation (BMT), but how this affects immune responses broadly remains unknown. Using a preclinical model of CMV reactivation after BMT, we found compromised antiviral humoral responses induced by IL-6 signaling. IL-6 signaling in T cells maintained Th1 cells, resulting in sustained IFN-γ secretion, which promoted endothelial cell (EC) injury, loss of the neonatal Fc receptor (FcRn) responsible for IgG recycling, and rapid IgG loss. T cell-specific deletion of IL-6R led to persistence of recipient-derived, CMV-specific IgG and inhibited CMV reactivation. Deletion of IFN-γ in donor T cells also eliminated EC injury and FcRn loss. In a phase III clinical trial, blockade of IL-6R with tocilizumab promoted CMV-specific IgG persistence and significantly attenuated early HCMV reactivation. In sum, IL-6 invoked IFN-γ-dependent EC injury and consequent IgG loss, leading to CMV reactivation. Hence, cytokine inhibition represents a logical strategy to prevent endothelial injury, thereby preserving humoral immunity after immunotherapy.


Subject(s)
Bone Marrow Transplantation , Cytomegalovirus Infections , Immunity, Humoral , Interleukin-6 , Antiviral Agents , Bone Marrow Transplantation/adverse effects , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/metabolism , Immunoglobulin G , Interleukin-6/metabolism , Animals , Mice
9.
Nat Commun ; 15(1): 2133, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459022

ABSTRACT

Many countries continue to experience pertussis epidemics despite widespread vaccination. Waning protection after booster vaccination has highlighted the need for a better understanding of the immunological factors that promote durable protection. Here we apply systems vaccinology to investigate antibody responses in adolescents in the Netherlands (N = 14; NL) and the United Kingdom (N = 12; UK) receiving a tetanus-diphtheria-acellular pertussis-inactivated poliovirus (Tdap-IPV) vaccine. We report that early antiviral and interferon gene expression signatures in blood correlate to persistence of pertussis-specific antibody responses. Single-cell analyses of the innate response identified monocytes and myeloid dendritic cells (MoDC) as principal responders that upregulate antiviral gene expression and type-I interferon cytokine production. With public data, we show that Tdap vaccination stimulates significantly lower antiviral/type-I interferon responses than Tdap-IPV, suggesting that IPV may promote antiviral gene expression. Subsequent in vitro stimulation experiments demonstrate TLR-dependent, IPV-specific activation of the pro-inflammatory p38 MAP kinase pathway in MoDCs. Together, our data provide insights into the molecular host response to pertussis booster vaccination and demonstrate that IPV enhances innate immune activity associated with persistent, pertussis-specific antibody responses.


Subject(s)
Diphtheria-Tetanus-acellular Pertussis Vaccines , Diphtheria , Poliovirus , Tetanus , Whooping Cough , Adolescent , Humans , Bordetella pertussis , Immunity, Humoral , Whooping Cough/prevention & control , Diphtheria/prevention & control , Vaccines, Combined , Antibodies, Bacterial , Poliovirus Vaccine, Inactivated , Vaccination , Immunization, Secondary , Corynebacterium , Interferons , Antiviral Agents
10.
Sci Rep ; 14(1): 5758, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459035

ABSTRACT

Two types of immunity, humoral and cellular, offer protection against COVID. Humoral protection, contributed by circulating neutralizing antibodies, can provide immediate protection but decays more quickly than cellular immunity and can lose effectiveness in the face of mutation and drift in the SARS-CoV-2 spike protein. Therefore, population-level seroprevalence surveys used to estimate population-level immunity may underestimate the degree to which a population is protected against COVID. In early 2021, before India began its vaccination campaign, we tested for humoral and cellular immunity to SARS-Cov-2 in representative samples of slum and non-slum populations in Bangalore, India. We found that 29.7% of samples (unweighted) had IgG antibodies to the spike protein and 15.5% had neutralizing antibodies, but at up to 46% showed evidence of cellular immunity. We also find that prevalence of cellular immunity is significantly higher in slums than in non-slums. These findings suggest (1) that a significantly larger proportion of the population in Bangalore, India, had cellular immunity to SARS-CoV-2 than had humoral immunity, as measured by serological surveys, and (2) that low socio-economic status communities display higher frequency of cellular immunity, likely because of greater exposure to infection due to population density.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , India/epidemiology , COVID-19/epidemiology , Seroepidemiologic Studies , Immunity, Cellular , Antibodies, Neutralizing , Immunity, Humoral , Antibodies, Viral , Vaccination
11.
Hum Vaccin Immunother ; 20(1): 2326316, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38466197

ABSTRACT

The immunogenicity of COVID-19 vaccines in patients with liver cirrhosis remains largely unknown. The purpose of this meta-analysis was to investigate the immunogenicity of COVID-19 vaccines in patients with cirrhosis and compare the humoral and cellular immune responses following complete COVID-19 vaccination between cirrhosis patients and healthy controls. A systematic literature search was conducted in PubMed, EMBASE, and Web of Science from 1 January 2020 to 22 August 2023. Sixteen studies with 2127 cirrhosis patients were included. The pooled seroconversion rate in patients with cirrhosis following complete COVID-19 vaccination was 92.4% (95% CI, 86.2%-96%, I2 = 90%) with significant between-study heterogeneity. Moreover, COVID-19 vaccination elicited a higher humoral immune response in patients of compensated cirrhosis as compared with decompensated cirrhosis (RR = 1.069, 95% CI, 1.011-1.131, I2 = 17%, p = .019). Additionally, 10 studies were included for comparison analysis of seroconversion rate between cirrhosis patients and healthy controls. The results showed that the seroconversion rate in patients with cirrhosis was slightly lower compared with healthy controls (RR = 0.972, 95% CI, 0.955-0.989, I2 = 66%, p = .001). Meanwhile, the pooled RR of cellular immune response rate for cirrhosis patients vs. healthy controls was 0.678 (95% CI, 0.563-0.817, I2 = 0, p < .0001). Our meta-analysis demonstrated that COVID-19 vaccination elicited diminished humoral and cellular immune responses in patients of cirrhosis. Patients with cirrhosis particularly decompensated cirrhosis who have completed full-doses of COVID-19 vaccination should receive continuous attention and preemptive measures.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunogenicity, Vaccine , Humans , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Immunity, Humoral , Liver Cirrhosis/complications , Patients
12.
J Immunol Methods ; 528: 113665, 2024 May.
Article in English | MEDLINE | ID: mdl-38490578

ABSTRACT

On March 13, 2021, Tunisia started a widespread immunization program against SARS-CoV-2 utilizing different vaccinations that had been given emergency approval. Herein, we followed prospectively a cohort of participant who received COVID-19 vaccine (Pfizer BioNTech and Sputnik-Gameleya V). The goal of this follow-up was to define the humoral and cellular immunological profile after immunization by assessing neutralizing antibodies and IFN- γ release. 26 vaccinated health care workers by Pfizer BioNTech (n=12) and Sputnik-Gameleya V (n=14) were enrolled from June to December 2021 in Military hospital of Tunis. All consenting participants were sampled for peripheral blood after three weeks of vaccination. The humoral response was investigated by the titer of anti-SARS-CoV-2 immunoglobulin G (IgG) antibodies to S1 protein. The CD4 and CD8 T cell responses were evaluated by the QuantiFERON® SARS-CoV-2 (Qiagen® Basel, Switzerland). Regardless the type of vaccine, the assessment of humoral and cellular response following vaccination showed a strong involvement of the later with expression of IFN-γ as compared to antibodies secretion. Moreover, we showed that people with past SARS-CoV-2 infection developed high levels of antibodies than those who are not previously infected. However, no significant difference was detected concerning interferon gamma (IFN-γ) expression by CD4 and CD8 T cells in health care worker (HCW) previously infection or not with COVID-19 infection. Analysis of immune response according to the type of vaccine, we found that Pfizer BioNTech induced high level of humoral response (91.66%) followed by Sputnik-Gameleya V (64.28%). However, adenovirus vaccine gave a better cellular response (57.14%) than mRNA vaccine (41.66%). Regarding the immune response following vaccine doses, we revealed a significant increase of neutralizing antibodies and IFN-γ release by T cells in patients fully vaccinated as compared to those who have received just one vaccine. Collectively, our data revealed a similar immune response between Pfizer BioNTech and Sputnik-Gameleya V vaccine with a slight increase of humoral response by mRNA vaccine and cellular response by adenovirus vaccine. It's evident that past SARS-CoV-2 infection was a factor that contributed to the vaccination's increased immunogenicity. However, the administration of full doses of vaccines (Pfizer BioNTech or Sputnik-Gameleya V) induces better humoral and cellular responses detectable even more than three months following vaccination.


Subject(s)
Adenovirus Vaccines , Blood Group Antigens , COVID-19 , Vaccines , Humans , SARS-CoV-2 , COVID-19 Vaccines , mRNA Vaccines , Vaccination , Antibodies, Neutralizing , Health Personnel , Interferon-gamma , Antibodies, Viral , Immunity, Humoral
13.
Fish Shellfish Immunol ; 148: 109479, 2024 May.
Article in English | MEDLINE | ID: mdl-38467322

ABSTRACT

Teleost B cells are of special interest due to their evolutionary position and involvement in vaccine-induced adaptive immune responses. While recent progress has revealed uneven distribution of B cell subsets across the various immune sites and that B cells are one of the early responders to infection, substantial knowledge gaps persist regarding their immunophenotypic profile, functional mechanisms, and what factors lead them to occupy different immune niches. This review aims to assess the current understanding of B cell diversity, their spatial distribution in various systemic and peripheral immune sites, how B cell responses initiate, the sites where these responses develop, their trafficking, and the locations where long-term B cell responses take place.


Subject(s)
B-Lymphocytes , Vaccines , Animals , Immunity, Humoral
14.
Vaccine ; 42(10): 2722-2728, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38514355

ABSTRACT

BACKGROUND: Data on SARS-CoV-2 vaccine responsiveness in adolescent/young adult (AYA) cancer patients are sparse. The present study assessed humoral and cellular immune responses post-vaccination in this population. METHODS: In this prospective study, patients aged 12-30 years undergoing cancer therapy ("on therapy") and survivors ("off therapy") were recruited. Anti-receptor binding domain (RBD) protein IgG levels were measured at baseline, four weeks post-first vaccine dose (T1), and six weeks post-second dose (T2). Cellular immunity was assessed using activation-induced markers and intracellular cytokine staining in a patient subset. The primary outcome was to quantify humoral responses in both cohorts at T2 compared to baseline. Clinical predictors of log antibody titres at T2 were identified. RESULTS: Between April-December 2022, 118 patients were recruited of median age 15.4 years. Among them, 77 (65.2 %) were in the "on therapy" group, and 77 (65.2 %) had received the BBV152 vaccine. At baseline, 108 (91.5 %) patients were seropositive for anti-RBD antibody. The log anti-RBD titre rose from baseline to T2 (p-value = 0.001) in the whole cohort; this rise was significant from baseline-T1 (p-value < 0.001), but not from T1 to T2 (p-value = 0.842). A similar pattern was seen in the "on therapy" cohort. BECOV-2 vaccine was independently associated with higher log anti-RBD titres than BBV152 (regression coefficient: 0.41; 95 % CI: 0.10-0.73; p = 0.011). Cellular immune responses were similar in the "on-" and "off therapy" groups at the three time points. CONCLUSION: Among AYA cancer patients, a single non-mRNA vaccine dose confers robust hybrid humoral immunity with limited benefit from a second dose.


Subject(s)
COVID-19 , Neoplasms , Humans , Adolescent , Young Adult , Prospective Studies , SARS-CoV-2 , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Vaccination , Immunity, Cellular , Neoplasms/therapy , Immunity, Humoral , Antibodies, Viral
15.
Front Immunol ; 15: 1330677, 2024.
Article in English | MEDLINE | ID: mdl-38433834

ABSTRACT

Introduction: Conventional foot-and-mouth disease (FMD) vaccines have been developed to enhance their effectiveness; however, several drawbacks remain, such as slow induction of antibody titers, short-lived immune response, and local side effects at the vaccination site. Therefore, we created a novel FMD vaccine that simultaneously induces cellular and humoral immune responses using the Dectin-2 agonist, D-galacto-D-mannan, as an adjuvant. Methods: We evaluated the innate and adaptive (cellular and humoral) immune responses elicited by the novel FMD vaccine and elucidated the signaling pathway involved both in vitro and in vivo using mice and pigs, as well as immune cells derived from these animals. Results: D-galacto-D-mannan elicited early, mid-, and long-term immunity via simultaneous induction of cellular and humoral immune responses by promoting the expression of immunoregulatory molecules. D-galacto-D-mannan also enhanced the immune response and coordinated vaccine-mediated immune response by suppressing genes associated with excessive inflammatory responses, such as nuclear factor kappa B, via Sirtuin 1 expression. Conclusion: Our findings elucidated the immunological mechanisms induced by D-galacto-D-mannan, suggesting a background for the robust cellular and humoral immune responses induced by FMD vaccines containing D-galacto-D-mannan. Our study will help to facilitate the improvement of conventional FMD vaccines and the design of next-generation FMD vaccines.


Subject(s)
Adjuvants, Vaccine , Lectins, C-Type , Viral Vaccines , Animals , Mice , Swine , Immunity, Humoral , Mannans , Adjuvants, Immunologic , Adjuvants, Pharmaceutic
16.
J Travel Med ; 31(3)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38438165

ABSTRACT

BACKGROUND: Vaccination plays a critical role in mitigating the burden associated with yellow fever (YF). However, there is a lack of comprehensive evidence on the humoral response to primary vaccination in the paediatric population, with several questions debated, including the response when the vaccine is administered at early ages, the effect of co-administration with other vaccines, the duration of immunity and the use of fractional doses, among others. This study summarizes the existing evidence regarding the humoral response to primary YF vaccination in infants and children. METHODS: Studies on the humoral response to primary YF vaccination in children aged 12 years or younger were reviewed. The humoral vaccine response rate (VRR), i.e. the proportion of children who tested positive for vaccine-induced YF-specific neutralizing antibodies, was pooled through random-effects meta-analysis and categorized based on the time elapsed since vaccination. Subgroup, meta-regression and sensitivity analyses were performed. RESULTS: A total of 33 articles met the inclusion criteria, with all but one conducted in countries where YF is endemic. A total of 14 028 infants and children entered this systematic review. Within three months following vaccination, the pooled VRR was 91.9% (95% CI 89.8-93.9). A lower VRR was observed with the 17DD vaccine at the meta-regression analysis. No significant differences in immunogenicity outcomes were observed based on age, administration route, co-administration with other vaccines, or fractional dosing. Results also indicate a decline in VRR over time. CONCLUSIONS: Primary YF vaccination effectively provides humoral immunity in paediatric population. However, humoral response declines over time, and this decline is observable after the first 18 months following vaccination. A differential response according to the vaccine substrain was also observed. This research has valuable implications for stimulating further research on the primary YF vaccination in infants and children, as well as for informing future policies.


Subject(s)
Yellow Fever Vaccine , Yellow Fever , Child , Infant , Humans , Yellow Fever/prevention & control , Antibodies, Neutralizing , Vaccination/methods , Immunity, Humoral , Antibodies, Viral
17.
Pediatr Transplant ; 28(3): e14712, 2024 May.
Article in English | MEDLINE | ID: mdl-38553800

ABSTRACT

INTRODUCTION: Since the start of the COVID-19 pandemic, data published on the immunogenicity of the SARS-CoV-2 BNT 162B2 vaccine in pediatric patients receiving renal replacement therapy are scant. Our primary objective is to study this population's humoral immune response to the COVID-19 vaccine. METHODS: Pediatric kidney transplant recipients (PKTRs) and hemodialysis recipients (HR) at our center who received two doses of the SARS-CoV-2 BNT 162B2 vaccine were included. Transplant and HR who had PCR-positive COVID-19 infections during the study, regardless of their vaccine status, were also included. SARS-CoV-2 anti-spike protein (S1/S2) IgG was measured after the second dose of the vaccine and after any PCR-positive COVID-19 infection as routine clinical practice. Data on demographics, induction, maintenance immunosuppressants, type of transplant, and posttransplant or dialysis duration were included. RESULTS: Of the 61 patients included, 19 were dialysis recipients who received two doses of vaccine without subsequent infection (HV), and 42 were kidney transplant recipients. All dialysis patients and 33 (78.6%) transplant recipients received two doses of the SARS-CoV-2 BNT 162b2 vaccine. A total of 33.3% (11/33) of the transplant recipients who received vaccination developed COVID-19 infection (KTH) at a median time of 13 days after the second dose of vaccine. Nine transplant patients had pure COVID-19 infection without vaccination (KTI). The seroconversion rate in the HV group was 94.7% (18/19) compared to 50% (11/22) in the kidney transplant vaccine recipients who did not develop subsequent COVID-19 infection (KTV) (p < .001). The median S1/S2 IgG titers for the HV group were 400 AU/mL versus 15 AU/mL in the KTV group (p < .0001). There was no significant difference in the duration of the test from the second dose of the vaccine between HV and KTV (55 vs. 33.5 days, p = .095). The KTH had higher titers than KTV group (370 vs. 15 p < .0001). The median duration of the test after vaccination in the vaccine group and those with hybrid immunity was similar (35 vs. 33.5 days, p = .2).There were no clear predictors for seroconversion in the PKTRs. Natural infection alone was as good as the vaccine in eliciting humoral immune response. CONCLUSION: The humoral immune response to two doses of the SARS-CoV-2 BNT 162B2 vaccine in PKTRs without subsequent COVID-19 infection is suboptimal compared to that in hemodialysis recipients and in PKTRs with hybrid immunity from both infection and vaccination.


Subject(s)
COVID-19 , Vaccines , Humans , Child , BNT162 Vaccine , COVID-19 Vaccines/therapeutic use , Immunity, Humoral , Pandemics , Renal Replacement Therapy , Vaccination , COVID-19/prevention & control , Transplant Recipients , Immunoglobulin G , Antibodies, Viral
18.
Vet Res ; 55(1): 41, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532491

ABSTRACT

Tuberculosis BCG vaccination induced non-specific protective effects in humans led to postulate the concept of trained immunity (TRAIM) as an innate type of immune mechanism that triggered by a pathogen, protects against others. Killed vaccines have been considered not to be effective. However, field efficacy of a commercial vaccine against paratuberculosis, as well as of a recently developed M. bovis heat-inactivated vaccine (HIMB) prompted to test whether it could also induce TRAIM. To this, we used a sarcoptic mange rabbit model. Twenty-four weaned rabbits were treated orally or subcutaneously with a suspension of either HIMB (107 UFC) or placebo. Eighty-four days later the animals were challenged with approximately 5000 S. scabiei mites on the left hind limb. Skin lesion extension was measured every 2 weeks until 92 days post-infection (dpi). Two animals were killed at 77 dpi because of extensive skin damage. The rest were euthanized and necropsied and the lesion area and the mite burden per squared cm were estimated. Specific humoral immune responses to S. scabiei and to M. bovis were investigated with the corresponding specific ELISA tests. Subcutaneously and orally HIMB vaccinated animals compared with placebo showed reduced lesion scores (up to 74% and 62%, respectively) and mite counts (-170% and 39%, respectively). This, together with a significant positive correlation (r = 0.6276, p = 0.0031) between tuberculosis-specific antibodies and mite count at 92 dpi supported the hypothesis of non-specific effects of killed mycobacterial vaccination. Further research is needed to better understand this mechanism to maximize cross protection.


Subject(s)
Mycobacterium bovis , Scabies , Tuberculosis , Humans , Rabbits , Animals , Scabies/prevention & control , Scabies/veterinary , Tuberculosis/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary , Immunity, Humoral , Vaccines, Inactivated , BCG Vaccine
19.
Semin Immunol ; 72: 101875, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38489999

ABSTRACT

The integration of multi-'omic datasets into complex systems-wide assessments has become a mainstay in immunologic investigation. This focus on high-dimensional data collection and analysis was on full display in the investigation of COVID-19, the respiratory illness resulting from infection by the novel coronavirus SARS-CoV-2. Particularly in the area of B cell biology, tremendous efforts in both cellular and serologic investigation have resulted in an increasingly detailed mapping of the coordinated effector, memory, and antibody secreting cell responses that underpin the development of humoral immunity in response to primary viral infection. Further, the rapid development and deployment of effective vaccines has allowed for the assessment of developing memory responses across a wide variety of immune contexts, including in patients with compromised immune function. The result has been a period of rapid gains in the understanding of B cell biology unrestricted to the study of COVID-19. Here, we outline the systems-level technologies that have been routinely implemented in these investigations throughout the pandemic, and discuss how their use has led to clear and applicable gains in pursuance of the amelioration of human infectious disease and beyond.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , B-Lymphocytes , Immunity, Humoral , Systems Biology , Antibodies, Viral
20.
J Virol ; 98(4): e0191223, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38501661

ABSTRACT

The corona virus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2) spurred a worldwide race for the development of an efficient vaccine. Various strategies were pursued; however, the first vaccines to be licensed presented the SARS-CoV-2 spike protein either in the context of a non-replicating adenoviral vector or as an mRNA construct. While short-term efficacies have extensively been characterized, the duration of protection, the need for repeated boosting, and reasonable vaccination intervals have yet to be defined. We here describe the adaptive immune response resulting from homologous and heterologous vaccination regimen at 18 months after primary vaccination. To that extent, we monitored 176 healthcare workers, the majority of whom had recovered from previous SARS-CoV-2 infection. In summary, we find that differences depending on primary immunization continue to exist 18 months after the first vaccination and these findings hold true irrespective of previous infection with the virus. Homologous primary immunization with BNT162b2 was repeatedly shown to produce higher antibody levels and slower antibody decline, leading to more effective in vitro neutralization capacities. Likewise, cellular responses resulting from in vitro re-stimulation were more pronounced after primary immunization involving BNT162b2. In contrast, IL-2 producing memory T helper and cytotoxic T cells appeared independent from the primary vaccination regimen. Despite these differences, comparable infection rates among all vaccination groups suggest comparable real-life protection.IMPORTANCEVaccination against the severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2) was shown to avert severe courses of corona virus disease 2019 (COVID-19) and to mitigate spreading of the virus. However, the duration of protection and need for repeated boosting have yet to be defined. Monitoring and comparing the immune responses resulting from various vaccine strategies are therefore important to fill knowledge gaps and prepare for future pandemics.


Subject(s)
COVID-19 Vaccines , COVID-19 , Spike Glycoprotein, Coronavirus , Humans , BNT162 Vaccine , RNA , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Immunity, Cellular , Antibodies, Viral , Antibodies, Neutralizing , Immunity, Humoral
SELECTION OF CITATIONS
SEARCH DETAIL
...